A primary study on rat fetal development and brain-derived neurotrophic factor levels under the control of electromagnetic fields


  • Sima DastAmooz Department of Sport Science and Physical Education, the Chinese University of Hong Kong https://orcid.org/0000-0002-4972-1234
  • Shahzad Tahmasebi Boroujeni Department of Motor Learning and Control, Faculty of Physical Education and Sport Sciences, University of Tehran
  • Nahid Sarahian Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran https://orcid.org/0000-0002-7915-7355




Electromagnetic fields, BDNF factor, anthropometric measurements, male offspring, crown-rump length


Background. In previous researches, electromagnetic fields have been shown to adversely affect the behavior and biology of humans and animals; however, body growth and brain-derived neurotrophic factor levels were not evaluated.
Objective. The original investigation aimed to examine whether Electromagnetic Fields (EMF) exposure had adverse effects on spatial learning and motor function in rats and if physical activity could diminish the damaging effects of EMF exposure. In this study, we measured anthropometric measurements and brain-derived neurotrophic factor (BDNF) levels in pregnant rats’ offspring to determine if Wi-Fi EMF also affected their growth. These data we report for the first time in this publication.
Methods. Twenty Albino-Wistar pregnant rats were divided randomly into EMF and control (CON) groups, and after delivery, 12 male fetuses were randomly selected. For assessing the body growth change of offspring beginning at delivery, then at 21 postnatal days, and finally at 56 post-natal days, the crown-rump length of the body was assessed using a digital caliper. Examining BDNF factor levels, an Enzyme-linked immunosorbent assay ELISA kit was taken. Bodyweight was recorded by digital scale.
Results. Outcomes of the anthropometric measurements demonstrated that EMF blocked body growth in rats exposed to EMF. The results of the BDNF test illustrated that the BDNF in the EMF liter group was remarkably decreased compared to the CON group. The results indicate that EMF exposure could affect BDNF levels and harm body growth in pregnant rats’ offspring.
Conclusions. The results suggest that EMF exposure could affect BDNF levels and impair body growth in pregnant rats’ offspring.

Download data is not yet available.


Dasdag S, Akdag MMZ, Erdal ME, et al. Effects of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on microRNA expression in brain tissue. Int J Radiat Biol. 2015;91(7):555-561. doi:10.3109/09553002.2015.1028599 DOI: https://doi.org/10.3109/09553002.2015.1028599

Li ZQ, Zhang Y, Wan YM, et al. Testing of behavioral and cognitive development in rats after prenatal exposure to 1800 and 2400 MHz radiofrequency fields. J Radiat Res. 2020;61(2):197-206. doi:10.1093/jrr/rrz097 DOI: https://doi.org/10.1093/jrr/rrz097

Takahashi S, Imai N, Nabae K, et al. Lack of adverse effects of whole-body exposure to a mobile telecommunication electromagnetic field on the rat fetus. Radiat Res. 2010;173(3):362-372. doi:10.1667/RR1615.1 DOI: https://doi.org/10.1667/RR1615.1

Lane RH. Fetal programming, epigenetics, and adult onset disease. Clin Perinatol. 2014;41(4):815-831. doi:10.1016/j.clp.2014.08.006 DOI: https://doi.org/10.1016/j.clp.2014.08.006

Abdelmelek H, Molnar A, Servais S, et al. Skeletal muscle HSP72 and norepinephrine response to static magnetic field in rat. J Neural Transm. 2006;113(7):821-827. doi:10.1007/s00702-005-0364-7 DOI: https://doi.org/10.1007/s00702-005-0364-7

Zecca L, Mantegazza C, Margonato V, et al. Biological effects of prolonged exposure to ELF electromagnetic fields in rats: III. 50 Hz electromagnetic fields. Bioelectromagnetics. 1998;19(1):57-66. doi:10.1002/(SICI)1521-186X(1998)19:1<57::AID-BEM7>3.0.CO;2-3 DOI: https://doi.org/10.1002/(SICI)1521-186X(1998)19:1<57::AID-BEM7>3.0.CO;2-3

Banaceur S, Banasr S, Sakly M, Abdelmelek H. Whole body exposure to 2.4GHz WIFI signals: Effects on cognitive impairment in adult triple transgenic mouse models of Alzheimer’s disease (3xTg-AD). Behav Brain Res. 2013;240(1):197-201. doi:10.1016/j.bbr.2012.11.021 DOI: https://doi.org/10.1016/j.bbr.2012.11.021

Jadidi M, Safari M, Baghian A. Effects of extremely low frequency electromagnetic fields on cell proliferation. Koomesh. 2013;15(1):1-10. Accessed September 8, 2021. http://eprints.skums.ac.ir/3930/

DastAmooz S, Tahmasebi Boroujeni S, Shahbazi M, Vali Y. Physical activity as an option to reduce adverse effect of EMF exposure during pregnancy. Int J Dev Neurosci. 2018;71. doi:10.1016/j.ijdevneu.2018.07.009

Jirsa VK, Haken H. Field Theory of Electromagnetic Brain Activity. Phys Rev Lett. 1996;77(5):960-963. doi:10.1103/PhysRevLett.77.960 DOI: https://doi.org/10.1103/PhysRevLett.77.960

Li DK, Chen H, Ferber JR, Hirst AK, Odouli R. Association Between Maternal Exposure to Magnetic Field Nonionizing Radiation During Pregnancy and Risk of Attention-Deficit/Hyperactivity Disorder in Offspring in a Longitudinal Birth Cohort. JAMA Netw open. 2020;3(3):e201417. doi:10.1001/jamanetworkopen.2020.1417 DOI: https://doi.org/10.1001/jamanetworkopen.2020.1417

Balassa T, Szemerszky R, Bárdos GY. Effect of short-term 50 Hz electromagnetic field exposure on the behavior of rats. Acta Physiol Hung. 2009;96(4):437-448. doi:10.1556/APhysiol.96.2009.4.4 DOI: https://doi.org/10.1556/APhysiol.96.2009.4.4

Balind SR, Selaković V, Radenović L, Prolić Z, Janać B. Extremely low frequency magnetic field (50 Hz, 0.5 mT) reduces oxidative stress in the brain of gerbils submitted to global cerebral ischemia. Arumugam T V., ed. PLoS One. 2014;9(2):e88921. doi:10.1371/journal.pone.0088921 DOI: https://doi.org/10.1371/journal.pone.0088921

Haarala C, Ek M, Björnberg L, et al. 902 MHz mobile phone does not affect short term memory in humans. Bioelectromagnetics. 2004;25(6):452-456. doi:10.1002/bem.20014 DOI: https://doi.org/10.1002/bem.20014

Tapia-Arancibia L, Rage F, Givalois L, Arancibia S. Physiology of BDNF: Focus on hypothalamic function. Front Neuroendocrinol. 2004;25(2):77-107. doi:10.1016/j.yfrne.2004.04.001 DOI: https://doi.org/10.1016/j.yfrne.2004.04.001

Sasi M, Vignoli B, Canossa M, Blum R. Neurobiology of local and intercellular BDNF signaling. Pflugers Arch. 2017;469(5-6):593-610. doi:10.1007/s00424-017-1964-4 DOI: https://doi.org/10.1007/s00424-017-1964-4

Rosas-Vargas H, … JM-E-A of medical, 2011 U. Brain-derived neurotrophic factor, food intake regulation, and obesity. Elsevier. 2011;42(6):482-494. Accessed September 11, 2021. https://www.sciencedirect.com/science/article/pii/S0188440911001986 DOI: https://doi.org/10.1016/j.arcmed.2011.09.005

Gray J, Yeo GSH, Cox JJ, et al. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes. 2006;55(12):3366-3371. doi:10.2337/db06-0550 DOI: https://doi.org/10.2337/db06-0550

Schlotz W, Phillips DIW. Fetal origins of mental health: Evidence and mechanisms. Brain Behav Immun. 2009;23(7):905-916. Accessed May 28, 2020. https://www.sciencedirect.com/science/article/pii/S0889159109000476 DOI: https://doi.org/10.1016/j.bbi.2009.02.001

Briana DDD, Papastavrou M, … MB-TJ of, et al. Differential expression of cord blood neurotrophins in gestational diabetes: the impact of fetal growth abnormalities. J Matern Neonatal Med. 2018;31(3):278-283. doi:10.1080/14767058.2017.1281907 DOI: https://doi.org/10.1080/14767058.2017.1281907

Mayeur S, Silhol M, Moitrot E, et al. Placental BDNF/TrkB signaling system is modulated by fetal growth disturbances in rat and human. Placenta. 2010;31(9):785-791. doi:10.1016/j.placenta.2010.06.008 DOI: https://doi.org/10.1016/j.placenta.2010.06.008

Glud M, Christiansen T, Larsen LH, Richelsen B, Bruun JM. Changes in Circulating BDNF in relation to Sex, Diet, and Exercise: A 12-Week Randomized Controlled Study in Overweight and Obese Participants. J Obes. 2019;2019:1-7. doi:10.1155/2019/4537274 DOI: https://doi.org/10.1155/2019/4537274

Sandrini L, Di Minno A, Amadio P, Ieraci A, Tremoli E, Barbieri SS. Association between obesity and circulating brain-derived neurotrophic factor (BDNF) levels: Systematic review of literature and meta-analysis. Int J Mol Sci. 2018;19(8). doi:10.3390/ijms19082281 DOI: https://doi.org/10.3390/ijms19082281

Kawamura K, Kawamura N, Fukuda J, Kumagai J, Hsueh AJW, Tanaka T. Regulation of preimplantation embryo development by brain-derived neurotrophic factor. Dev Biol. 2007;311(1):147-158. doi:10.1016/j.ydbio.2007.08.026 DOI: https://doi.org/10.1016/j.ydbio.2007.08.026

Huber R, Schuderer J, Graf T, et al. Radio Frequency Electromagnetic Field Exposure in Humans: Estimation of SAR Distribution in the Brain, Effects on Sleep and Heart Rate. Bioelectromagnetics. 2003;24(4):262-276. doi:10.1002/bem.10103 DOI: https://doi.org/10.1002/bem.10103

Popii V, Baumann G. Laboratory measurement of growth hormone. Clin Chim Acta. 2004;350(1-2):1-16. doi:10.1016/j.cccn.2004.06.007 DOI: https://doi.org/10.1016/j.cccn.2004.06.007

Goodway J, Ozmun J, Gallahue D. Understanding Motor Development: Infants, Children, Adolescents, Adults.; 2019.

Cruciani S, Campi T, Feliziani M, Maradei F. Optimum coil configuration of wireless power transfer system in presence of shields. In: IEEE International Symposium on Electromagnetic Compatibility. Vol 2015-Septm. IEEE; 2015:720-725. doi:10.1109/ISEMC.2015.7256252 DOI: https://doi.org/10.1109/ISEMC.2015.7256252

DastAmooz S, Tahmasebi Boroujeni S, Shahbazi M, Vali Y. Physical activity as an option to reduce adverse effect of EMF exposure during pregnancy. Int J Dev Neurosci. 2018;71(August):10-17. doi:10.1016/j.ijdevneu.2018.07.009 DOI: https://doi.org/10.1016/j.ijdevneu.2018.07.009

Alchalabi ASH, Aklilu E, Aziz AR, Malek F, Ronald SH, Khan MA. Different periods of intrauterine exposure to electromagnetic field: Influence on female rats’ fertility, prenatal and postnatal development. Asian Pacific J Reprod. 2016;5(1):14-23. doi:10.1016/j.apjr.2015.12.003 DOI: https://doi.org/10.1016/j.apjr.2015.12.003

Hand JWW, Li Y, Thomas ELL, Rutherford MAA, Hajnal JV V. Prediction of specific absorption rate in mother and fetus associated with MRI examinations during pregnancy. Magn Reson Med. 2006;55(4):883-893. doi:10.1002/mrm.20824 DOI: https://doi.org/10.1002/mrm.20824

Kikuchi S, Saito K, Takahashi M, Ito K, Ikehira H. SAR computation inside fetus by RF coil during MR imaging employing realistic numerical pregnant woman model. IEICE Trans Commun. 2009;E92-B(2):431-439. doi:10.1587/transcom.E92.B.431 DOI: https://doi.org/10.1587/transcom.E92.B.431

Shahbazi M, Naghdi N, Tahmasebi S, Sheikh M, Namvar Asl N, Kazemnejad A. The effect of iron and zinc dietary restriction of pregnant rats on physical growth of litters. Biol Trace Elem Res. 2009;128(3):232-238. doi:10.1007/s12011-008-8271-z DOI: https://doi.org/10.1007/s12011-008-8271-z

Pillai A, Bruno D, Sarreal AS, et al. Plasma BDNF levels vary in relation to body weight in females. Zhang XY, ed. PLoS One. 2012;7(7):e39358. Accessed July 23, 2020. https://dx.plos.org/10.1371/journal.pone.0039358 DOI: https://doi.org/10.1371/journal.pone.0039358

Centre AR. Rat and Mice Weights. Animal Resources C.

Milham S. Evidence that dirty electricity is causing the worldwide epidemics of obesity and diabetes. Electromagn Biol Med. 2014;33(1):75-78. doi:10.3109/15368378.2013.783853 DOI: https://doi.org/10.3109/15368378.2013.783853

Pelleymounter MA, Cullen MJ, Wellman CL. Characteristics of BDNF-induced weight loss. Exp Neurol. 1995;131(2):229-238. doi:10.1016/0014-4886(95)90045-4 DOI: https://doi.org/10.1016/0014-4886(95)90045-4

An JJ, Kinney CE, Tan JW, Liao GY, Kremer EJ, Xu B. TrkB-expressing paraventricular hypothalamic neurons suppress appetite through multiple neurocircuits. Nat Commun. 2020;11(1):1-16. doi:10.1038/s41467-020-15537-w DOI: https://doi.org/10.1038/s41467-020-15537-w

Barbacid M. The Trk family of neurotrophin receptors. J Neurobiol. 1994;25(11):1386-1403. doi:10.1002/neu.480251107 DOI: https://doi.org/10.1002/neu.480251107

Elmquist JK, Maratos-Flier E, Saper CB, Flier JS. Unraveling the central nervous system pathways underlying responses to leptin. Nat Neurosci. 1998;1(6):445-450. doi:10.1038/2164 DOI: https://doi.org/10.1038/2164

Vanevski F, Xu B. Molecular and neural bases underlying roles of BDNF in the control of body weight. Front Neurosci. 2013;7(7 MAR):37. Accessed July 26, 2020. www.frontiersin.org DOI: https://doi.org/10.3389/fnins.2013.00037

Komori T, Morikawa Y, Nanjo K, Senba E. Induction of brain-derived neurotrophic factor by leptin in the ventromedial hypothalamus. Neuroscience. 2006;139(3):1107-1115. doi:10.1016/j.neuroscience.2005.12.066 DOI: https://doi.org/10.1016/j.neuroscience.2005.12.066

Bariohay B, Lebrun B, Moyse E, Jean A. Brain-derived neurotrophic factor plays a role as an anorexigenic factor in the dorsal vagal complex. Endocrinology. 2005;146(12):5612-5620. doi:10.1210/en.2005-0419 DOI: https://doi.org/10.1210/en.2005-0419

Liao GY, An JJ, Gharami K, et al. Dendritically targeted Bdnf mRNA is essential for energy balance and response to leptin. Nat Med. 2012;18(4):564-571. doi:10.1038/nm.2687 DOI: https://doi.org/10.1038/nm.2687

Baydyuk M, Nguyen MT, Xu B. Chronic deprivation of TrkB signaling leads to selective late-onset nigrostriatal dopaminergic degeneration. Exp Neurol. 2011;228(1):118-125. doi:10.1016/j.expneurol.2010.12.018 DOI: https://doi.org/10.1016/j.expneurol.2010.12.018

Abramson MJ, Benke GP, Dimitriadis C, et al. Mobile telephone use is associated with changes in cognitive function in young adolescents. Bioelectromagnetics. 2009;30(8):678-686. doi:10.1002/bem.20534 DOI: https://doi.org/10.1002/bem.20534

Markovà E, Malmgren LOGG, Belyaev IY. Microwaves from mobile phones inhibit 53BP1 focus formation in human stem cells more strongly than in differentiated cells: Possible mechanistic link to cancer risk. Environ Health Perspect. 2010;118(3):394-399. doi:10.1289/ehp.0900781 DOI: https://doi.org/10.1289/ehp.0900781

Akbarnejad Z, Esmaeilpour K, Shabani M, Asadi-Shekaari M, Saeedi goraghani M, Ahmadi-Zeidabadi M. Spatial memory recovery in Alzheimer’s rat model by electromagnetic field exposure. Int J Neurosci. 2018;128(8):691-696. doi:10.1080/00207454.2017.1411353 DOI: https://doi.org/10.1080/00207454.2017.1411353

Kamal A, Biessels GJ, Duis SEJ, Gispen WH. Learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: Interaction of diabetes and ageing. Diabetologia. 2000;43(4):500-506. DOI: https://doi.org/10.1007/s001250051335

Jerusalinsky D, Kornisiuk E, Izquierdo I. Cholinergic neurotransmission and synaptic plasticity concerning memory processing. Neurochem Res. 1997;22(4):507-515. doi:10.1023/A:1027376230898 DOI: https://doi.org/10.1023/A:1027376230898

Teyler TJ, Cavus I, Coussens C, et al. Multideterminant role of calcium in hippocampal synaptic plasticity. Hippocampus. 1994;4(6):623-634. doi:10.1002/hipo.450040602 DOI: https://doi.org/10.1002/hipo.450040602

Lisi A, Ciotti MT, Ledda M, et al. Exposure to 50 Hz electromagnetic radiation promote early maturation and differentiation in newborn rat cerebellar granule neurons. J Cell Physiol. 2005;204(2):532-538. doi:10.1002/jcp.20322 DOI: https://doi.org/10.1002/jcp.20322

Jelenković A, Janać B, Pešić V, Jovanović DM, Vasiljević I, Prolić Z. Effects of extremely low-frequency magnetic field in the brain of rats. Brain Res Bull. 2006;68(5):355-360. DOI: https://doi.org/10.1016/j.brainresbull.2005.09.011




How to Cite

DastAmooz, S., Tahmasebi Boroujeni, S., & Sarahian, N. (2023). A primary study on rat fetal development and brain-derived neurotrophic factor levels under the control of electromagnetic fields. Journal of Public Health in Africa, 14(6). https://doi.org/10.4081/jphia.2023.2347



Original Articles