Predicting dengue incidence using panel data analysis


  • Mela Firdaust Doctoral Program of Public Health, Faculty of Public Health, Universitas Airlangga, Surabaya
  • Ririh Yudhastuti Faculty of Public Health, Universitas Airlangga, Surabaya
  • Mahmudah Mahmudah Faculty of Public Health, Universitas Airlangga, Surabaya
  • Hari Basuki Notobroto Faculty of Public Health, Universitas Airlangga, Surabaya



dengue, panel data, population density, vector control


Dengue is the most rapidly spreading infectious disease, especially in Indonesia. Dengue virus is transmitted by the bite of female Aedes mosquitoes. The high human population density and proximity to vector breeding places strengthen the interaction between the virus, vector, and humans as hosts. Using dengue incidence panel data during 2018-2019 in 34 provinces in Indonesia, this study examined the effect of human population density as a demographic variable and vector control on dengue incidence in Indonesia. The time series data were analyzed using EViews. The fixed effect model estimation showed that dengue incidence was significantly associated with demographic variables measured as human population density, with a P-value of 0.02. The vector control variable shows an insignificant association with dengue incidence. But simultaneous analysis between human population density and vector control on dengue incidence has a significant association with probability F (statistic) = 0.000. Our study demonstrated that densely populated provinces in Indonesia have a very high incidence of dengue. Improving sanitation in densely populated settlements can prevent and control dengue incidence.

Download data is not yet available.


Gan SJ, Leong YQ, bin Barhanuddin MFH, Wong ST, Wong SF, Mak JW, et al. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review. Parasit Vectors. 2021;14(1):1–19. DOI:

Bharati M, Rai P, Saha D. Insecticide resistance in Aedes albopictus Skuse from sub-Himalayan districts of West Bengal, India. Acta Trop [Internet]. 2019;192(December 2018):104–11. Available from: DOI:

Amelia-Yap ZH, Chen CD, Sofian-Azirun M, Low VL. Pyrethroid resistance in the dengue vector Aedes aegypti in Southeast Asia: Present situation and prospects for management. Parasit Vectors. 2018;11(1):1–17. DOI:

WHO. Global Strategy For Dengue Prevention and Control 2012-2020. WHO Press; 2012.

Ministry of Health Republic of Indonesia. Indonesia Health Profile 2020. Jakarta: Ministry of Health Republic of Indonesia; 2021. 139 p.

Ministry of Health Republic of Indonesia. Indonesia Health Profile 2019. Jakarta: Ministry of Health Republic of Indonesia; 2020. 497 p.

Ouattara CA, Traore TI, Traore S, Sangare I, Meda CZ, Savadogo LGB. Climate factors and dengue fever in Burkina Faso from 2017 to 2019. J Public Health Afr. 2022 May 24;13(1). DOI:

Gui H, Gwee S, Koh J, Pang J. Weather factors associated with reduced risk of dengue transmission in an urbanized tropical city. Int J Environ Res Public Health. 2022 Jan 1;19(1). DOI:

WHO. Dengue and Severe Dengue [Internet]. 2021. Available from:

Nachaiwieng W, Yanola J, Chamnanya S, Lumjuan N, Somboon P. Efficacy of five commercial household insecticide aerosol sprays against pyrethroid resistant Aedes aegypti and Culex quinquefasciatus mosquitoes in Thailand. Pestic Biochem Physiol. 2021;178(July):104911. DOI:

Kementerian Kesehatan RI. Permenkes No.50 Tahun 2017 Tentang Standar Baku Mutu Kesehatan Lingkungan dan Persyaratan Kesehatan untuk Vektor dan Binatang Pembawa Penyakit Serta Pengendaliannya. Jakarta: Kementerian Kesehatan Republik Indonesia; 2017. 82 p.

Yang X, Zhou Y, Sun Y, Liu J, Jiang D. Multiple insecticide resistance and associated mechanisms to volatile pyrethroid in an Aedes albopictus population collected in southern China. Pestic Biochem Physiol [Internet]. 2021;174(February):104823. Available from: DOI:

Watts MJ, Kotsila P, Mortyn PG, Sarto i Monteys V, Urzi Brancati C. Influence of socio-economic, demographic and climate factors on the regional distribution of dengue in the United States and Mexico. Int J Health Geogr. 2020 Dec 1;19(1). DOI:

Ministry of Health Republic of Indonesia. Indonesia Health Profile 2018. Jakarta: Ministry of Health Republic of Indonesia; 2019. 496 p.

Zulfikar R. Estimation model and selection method of panel data regression: An overview of common effect, fixed effect, and random effect model. JEMA: Jurnal Ilmiah Bidang Akuntansi. 2018;1–10. DOI:

Dhewantara PW, Marina R, Puspita T, Ariati Y, Purwanto E, Hananto M, et al. Spatial and temporal variation of dengue incidence in the island of Bali, Indonesia: An ecological study. Travel Med Infect Dis. 2019;32(May):101437. DOI:

Khan M, Pedersen M, Zhu M, Zhang H, Zhang L. Dengue transmission under future climate and human population changes in mainland China. Appl Math Model. 2023 Feb 1;114:785–98. DOI:

Araujo RV, Albertini MR, Costa-da-Silva AL, Suesdek L, Franceschi NCS, Bastos NM, et al. São Paulo urban heat islands have a higher incidence of dengue than other urban areas. Brazilian Journal of Infectious Diseases. 2015 Mar 1;19(2):146–55. DOI:

Khalid B, Bueh C, Ghaffar A. Assessing the factors of dengue transmission in urban environments of pakistan. Atmosphere (Basel). 2021;12(6). DOI:

Hsu JC, Hsieh CL, Lu CY. Trend and geographic analysis of the prevalence of dengue in Taiwan, 2010–2015. International Journal of Infectious Diseases. 2017 Jan 1;54:43–9. DOI:

Fauzi IS, Nuraini N, Ayu RWS, Lestari BW. Temporal trend and spatial clustering of the dengue fever prevalence in West Java, Indonesia. Heliyon. 2022 Aug 1;8(8). DOI:

Abd Naeeim NS, Abdul Rahman N. Spatio-temporal clustering analysis using two different scanning windows: A case study of dengue fever in Peninsular Malaysia. Spat Spatiotemporal Epidemiol. 2022 Jun 1;41. DOI:

Masrizal, Sari NP. Analisis Kasus DBD Berdasarkan Unsur Iklim dan Kepadatan Penduduk Melalui Pendekatan GIS di Tanah Datar. Jurnal Kesehatan Masyarakat Andalas . 2016;10(2):166–71. DOI:

Kusairi A, Yulia R. Mapping Of Dengue Fever Distribution Based On Indonesian National Standard Cartography Rules As An Prevention Indicator Of Outbreaks. 2020; Available from: DOI:

Padmanabha H, Durham D, Correa F, Diuk-Wasser M, Galvani A. The Interactive Roles of Aedes aegypti Super-Production and Human Density in Dengue Transmission. PLoS Negl Trop Dis. 2012;6(8). DOI:

Romeo-Aznar V, Picinini Freitas L, Gonçalves Cruz O, King AA, Pascual M. Fine-scale heterogeneity in population density predicts wave dynamics in dengue epidemics. Nat Commun. 2022;13(1):1–9. DOI:

Schmidt WP, Suzuki M, Thiem V, White RG, Tsuzuki A, Yoshida LM, et al. Population density, water supply, and the risk of dengue fever in vietnam: Cohort study and spatial analysis. PLoS Med. 2011 Aug;8(8). DOI:

Faraji A, Egizi A, Fonseca DM, Unlu I, Crepeau T, Healy SP, et al. Comparative Host Feeding Patterns of the Asian Tiger Mosquito, Aedes albopictus, in Urban and Suburban Northeastern USA and Implications for Disease Transmission. PLoS Negl Trop Dis. 2014 Aug 7;8(8). DOI:

Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, et al. Sterile-Insect Methods for Control of Mosquito-Borne Diseases: An Analysis. VECTOR-BORNE AND ZOONOTIC DISEASES. 2010;10(3). DOI:

Salje H, Lessler J, Berry IM, Melendrez MC, Endy T, Kalayanarooj S, et al. Dengue diversity across spatial and temporal scales: Local structure and the effect of host population size. Science (1979). 2017 Mar 24;355(6331):1302–6. DOI:

Stoddard ST, Forshey BM, Morrison AC, Paz-Soldan VA, Vazquez-Prokopec GM, Astete H, et al. House-to-house human movement drives dengue virus transmission. Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):994–9. DOI:

Adams B, Kapan DD. Man bites mosquito: Understanding the contribution of human movement to vector-borne disease dynamics. PLoS One. 2009 Aug 26;4(8). DOI:

Vazquez-Prokopec GM, Montgomery BL, Horne P, Clennon JA, Ritchie SA. H E A L T H A N D M E D I C I N E Combining contact tracing with targeted indoor residual spraying significantly reduces dengue transmission.

Vazquez-Prokopec GM, Lenhart A, Manrique-Saide P. Housing improvement: A novel paradigm for urban vector-borne disease control? Trans R Soc Trop Med Hyg. 2016;110(10):567–9. DOI:

Quintero, Juliana; Brochero, Helea, Saide, Pablo Manrique; Perez, Mario Barrera; Basso, Cesar; Romero, Sonnia; Caprara, Adrea, Cunha, Jane Chris De Lima; Ayala, Elfrain Beltran; Foster, Kendra Michell; Kroeger, Axel; Sommerfeld, Johannes; Petzold M. Ecological, biological and social dimensions of dengue vector breeding in five urban settings of Latin America: a multi-country study. Infectious Disease. 2014;14(38):1–13. DOI:

Mahmud MAF, Abdul Mutalip MH, Lodz NA, Muhammad EN, Yoep N, Hasim MH, et al. The application of environmental management methods in combating dengue: a systematic review. Int J Environ Health Res. 2022;00(00):1–20. DOI:




How to Cite

Firdaust, M., Yudhastuti, R., Mahmudah, M., & Notobroto, H. B. (2023). Predicting dengue incidence using panel data analysis. Journal of Public Health in Africa, 14(s2).